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COMPOSITE SELF-RETAINING SUTURES
AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/340,530, filed Dec. 19, 2008, which applica-
tion claims the benefit under 35 U.S.C. §119(e) of U.S. Pro-
visional Patent Application No. 61/015,489 filed Dec. 20,
2007, both of which applications are incorporated herein by
reference in their entireties.

FIELD OF INVENTION

The present invention relates generally to self-retaining
systems for surgical procedures, methods of manufacturing
self-retaining systems for surgical procedures, and uses
thereof.

BACKGROUND OF INVENTION

Wound closure devices such as sutures, staples and tacks
have been widely used in superficial and deep surgical pro-
cedures in humans and animals for closing wounds, repairing
traumatic injuries or defects, joining tissues together (bring-
ing severed tissues into approximation, closing an anatomical
space, affixing single or multiple tissue layers together, cre-
ating an anastomosis between two hollow/luminal structures,
adjoining tissues, attaching or reattaching tissues to their
proper anatomical location), attaching foreign elements to
tissues (affixing medical implants, devices, prostheses and
other functional or supportive devices), and for repositioning
tissues to new anatomical locations (repairs, tissue elevations,
tissue grafting and related procedures) to name but a few
examples.

Sutures are often used as wound closure devices. Sutures
typically consist of a filamentous suture thread attached to a
needle with a sharp point. Suture threads can be made from a
wide variety of materials including bioabsorbable (i.e., that
break down completely in the body over time), or non-ab-
sorbable (permanent; non-degradable) materials. Absorbable
sutures have been found to be particularly useful in situations
where suture removal might jeopardize the repair or where
the natural healing process renders the support provided by
the suture material unnecessary after wound healing has been
completed; as in, for example, completing an uncomplicated
skin closure. Non-degradable (non-absorbable) sutures are
used in wounds where healing may be expected to be pro-
tracted or where the suture material is needed to provide
physical support to the wound for long periods of time; as in,
for example, deep tissue repairs, high tension wounds, many
orthopedic repairs and some types of surgical anastomosis.
Also, a wide variety of surgical needles are available, and the
shape, and size of the needle body and the configuration of the
needle tip is typically selected based upon the needs of the
particular application.

To use an ordinary suture, the suture needle is advanced
through the desired tissue on one side of the wound and then
through the adjacent side of the wound. The suture is then
formed into a “loop” which is completed by tying aknotin the
suture to hold the wound closed. Knot tying takes time and
causes a range of complications, including, but not limited to
(1) spitting (a condition where the suture, usually a knot)
pushes through the skin after a subcutaneous closure), (ii)
infection (bacteria are often able to attach and grow in the
spaces created by a knot), (iii) bulk/mass (a significant
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amount of suture material left in a wound is the portion that
comprises the knot), (iv) slippage (knots can slip or come
untied), and (v) irritation (knots serve as a bulk “foreign
body” in a wound). Suture loops associated with knot tying
may lead to ischemia (knots can create tension points that can
strangulate tissue and limit blood flow to the region) and
increased risk of dehiscence or rupture at the surgical wound.
Knot tying is also labor intensive and can comprise a signifi-
cant percentage of the time spent closing a surgical wound.
Additional operative procedure time is not only bad for the
patient (complication rates rise with time spent under anes-
thesia), but it also adds to the overall cost of the operation
(many surgical procedures are estimated to cost between $15
and $30 per minute of operating time).

Self-retaining sutures (including barbed sutures) differ
from conventional sutures in that self-retaining sutures pos-
sess numerous tissue retainers (such as barbs) which anchor
the self-retaining suture into the tissue following deployment
and resist movement of the suture in a direction opposite to
that in which the retainers face, thereby eliminating the need
to tie knots to affix adjacent tissues together (a “knotless”
closure). Knotless tissue-approximating devices having barbs
have been previously described in, for example, U.S. Pat. No.
5,374,268, disclosing armed anchors having barb-like projec-
tions, while suture assemblies having barbed lateral members
have been described in U.S. Pat. Nos. 5,584,859 and 6,264,
675. Sutures having a plurality of barbs positioned along a
greater portion of the suture are described in U.S. Pat. No.
5,931,855, which discloses a unidirectional barbed suture,
and U.S. Pat. No. 6,241,747, which discloses a bidirectional
barbed suture. Methods and apparatus for forming barbs on
sutures have been described in, for example, U.S. Pat. No.
6,848,152. Self-retaining systems for wound closure also
result in better approximation of the wound edges, evenly
distribute the tension along the length of the wound (reducing
areas of tension that can break or lead to ischemia), decrease
the bulk of suture material remaining in the wound (by elimi-
nating knots) and reduce spitting (the extrusion of suture
material—typically knots—through the surface of the skin.
All of these features are thought to reduce scarring, improve
cosmesis, and increase wound strength relative to wound
closures using plain sutures or staples. Thus, self-retaining
sutures, because such sutures avoid knot tying, allow patients
to experience an improved clinical outcome, and also save
time and costs associated with extended surgeries and follow-
up treatments. It is noted that all patents, patent applications
and patent publications identified throughout are incorpo-
rated herein by reference in their entirety.

The ability of self-retaining sutures to anchor and hold
tissues in place even in the absence of tension applied to the
suture by aknot is a feature that also provides superiority over
plain sutures. When closing a wound that is under tension,
this advantage manifests itself in several ways: (i) self-retain-
ing sutures have a multiplicity of retainers which can dissi-
pate tension along the entire length of the suture (providing
hundreds of “anchor” points this produces a superior cos-
metic result and lessens the chance that the suture will “slip”
or pull through) as opposed to knotted interrupted sutures
which concentrate the tension at discrete points; (ii) compli-
cated wound geometries can be closed (circles, arcs, jagged
edges) in a uniform manner with more precision and accuracy
than can be achieved with interrupted sutures; (iii) self-retain-
ing sutures eliminate the need for a “third hand” which is
often required for maintaining tension across the wound dur-
ing traditional suturing and knot tying (to prevent “slippage”
when tension is momentarily released during tying); (iv) self-
retaining sutures are superior in procedures where knot tying
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is technically difficult, such as in deep wounds or laparo-
scopic/endoscopic procedures; and (v) self-retaining sutures
can be used to approximate and hold the wound prior to
definitive closure. As a result, self-retaining sutures provide
easier handling in anatomically tight or deep places (such as
the pelvis, abdomen and thorax) and make it easier to
approximate tissues in laparoscopic/endoscopic and mini-
mally invasive procedures; all without having to secure the
closure via a knot. Greater accuracy allows self-retaining
sutures to be used for more complex closures (such as those
with diameter mismatches, larger defects or purse string
suturing) than can be accomplished with plain sutures.

A self-retaining suture may be unidirectional, having one
or more retainers oriented in one direction along the length of
the suture thread; or bidirectional, typically having one or
more retainers oriented in one direction along a portion of the
thread, followed by one or more retainers oriented in another
(often opposite) direction over a different portion of the
thread (as described with barbed retainers in U.S. Pat. Nos.
5,931,855 and. 6,241,747). Although any number of sequen-
tial or intermittent configurations of retainers are possible, a
common form ofbidirectional self-retaining suture involves a
needle at one end of a suture thread which has barbs having
tips projecting “away” from the needle until the transition
point (often the midpoint) of the suture is reached; at the
transition point the configuration of barbs reverses itself
about 180° (such that the barbs are now facing in the opposite
direction) along the remaining length of the suture thread
before attaching to a second needle at the opposite end (with
the result that the barbs on this portion of the suture also have
tips projecting “away” from the nearest needle). Projecting
“away” from the needle means that the tip of the barb is
further away from the needle and the portion of suture com-
prising the barb may be pulled more easily through tissue in
the direction of the needle than in the opposite direction. Put
another way, the barbs on both “halves” of a typical bidirec-
tional self-retaining suture have tips that point towards the
middle, with a transition segment (lacking barbs) interspersed
between them, and with a needle attached to either end.

SUMMARY OF INVENTION

Despite the multitude of advantages of unidirectional and
bidirectional self-retaining sutures, there remains a need to
improve upon the design of the suture such that a variety of
common limitations can be eliminated. Specifically, several
problems common to existing self-retaining sutures can be
addressed by the embodiments of this invention, including,
but not limited to: (i) retainers or barbs that are fragile and
break or too flexible and bend back, or do not stand proud due
to an insufficient ability of the material to plastically deform
and as such do not properly engage when deployed in tissue;
(i1) inadequate “hold” provided by the retainers for some
surgical procedures; resulting in retainers or barbs do not
sufficiently anchor in the surrounding tissue and “pull
through;” (iii) insufficient contact between the retainers and
the surrounding tissue (often occurring when the thread diam-
eter is too small relative to the diameter of the hole created by
alarger needle; this limits the ability of the retainers to contact
and “grip” the surrounding tissue); (iv) breakage of the self-
retaining suture during tensioning and wound approximation;
and (v) rotation and slippage of the retainers after deploy-
ment. Furthermore, the creation and or deployment of
retainer features of self-retaining sutures may be difficult to
achieve.

Thus, it would be desirable to provide improved self-re-
taining sutures which have enhanced ability to anchor into the
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surrounding tissue, enhanced tissue holding capabilities,
enhanced maximum load, and enhanced clinical perfor-
mance.

It would further be desirable to provide improved methods
for making self-retaining sutures that yield retainers which
can be more readily created, elevated and deployed.

In accordance with the foregoing background and the limi-
tations of the prior art, the present invention provides,
improved self-retaining sutures which have enhanced ability
to anchor into the surrounding tissue, enhanced tissue holding
capabilities, enhanced maximum load, and enhanced clinical
performance and methods for making such self-retaining
sutures.

In accordance with another aspect, the present invention
provides methods of making self-retaining sutures utilizing a
composite filament comprised of two or more different mate-
rials.

In accordance with another aspect, the present invention
provides self-retaining sutures comprising a composite fila-
ment having two of more different materials in which at least
one outer material enhances the creation, elevation and
deployment of the retainers of the suture.

In accordance with another aspect, the present invention
provides sutures comprising a composite filament of two of
more different co-extruded materials in which at least one
inner material enhances the tensile strength and/or the flex-
ibility of the suture and potentially does this without compro-
mising the creation, elevation, deployment and engagement
of the retainers on the suture.

In accordance with a specific embodiment of the present
invention a self-retaining suture is made by co-extruding two
materials to form a composite filament having a core made
from one material that has high strength and flexibility and a
sheath made from a different material selected to enhance
formation, positioning and strength of a plurality of retainers.
In a specific embodiment the sheath material is more plasti-
cally deformable than the core material and the core material
has more tensile strength than the sheath material such that
the suture has an enhanced combination of retainer features
and tensile strength compared to a similar suture formed from
a single-material filament.

In accordance with specific embodiments of the present
invention a self-retaining suture is made by forming a com-
posite filament having a core made from one material that has
high strength and a sheath made from a different material. A
plurality of retainers is formed from the material of the sheath
in the surface of the filament. In specific embodiments the
sheath and therefore retainers are made from a material that
has a higher elastic constant (and is thus stiffer) and/or a larger
plastic zone (and is thus more permanently deformable) than
the material of the core. Also, the core material is more elastic
and/or more flexible than the material of which the sheath and
retainers are made.

The details of one or more embodiments are set forth in the
description below. Other features, objects and advantages
will be apparent from the description, the drawings, and the
claims. In addition, the disclosures of all patents and patent
applications referenced herein are incorporated by reference
in their entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

Features of the invention, its nature and various advantages
will be apparent from the accompanying drawings and the
following detailed description of various embodiments.
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FIGS. 1A and 1B are perspective views of a self-retaining
suture comprising two materials in accordance with an
embodiment of the present invention.

FIG. 1C is a sectional view of the suture of FIGS. 1A and
1B illustrating the arrangement of the two materials.

FIGS. 2A, 2B and 2C are sectional views illustrating steps
in the creation of a retainer of a self-retaining suture compris-
ing two materials in accordance with an embodiment of the
present invention.

FIG. 2D is a sectional view of an alternative step in the
creation of a retainer of a self-retaining suture comprising two
materials in accordance with an embodiment of the present
invention.

FIG. 3A illustrates a method and apparatus for co-extrud-
ing multiple materials to form a composite filament suitable
for creation of a self-retaining suture comprising two mate-
rials in accordance with an embodiment of the present inven-
tion.

FIG. 3B illustrates a method and apparatus for extruding a
material onto a preformed filament to form a composite fila-
ment suitable for creation of a self-retaining suture compris-
ing two materials in accordance with an embodiment of the
present invention.

FIGS. 4A-I illustrate alternative configurations of co-ex-
truded suture stock suitable for creation of a self-retaining
suture comprising two materials in accordance with embodi-
ments of the present invention.

FIGS. 5A-C illustrate particular embodiments of self-re-
taining sutures comprising a composite filament.

DETAILED DESCRIPTION

Definitions

Definitions of certain terms that may be used hereinafter
include the following.

“Self-retaining system” refers to a self-retaining suture
together with devices for deploying the suture into tissue.
Such deployment devices include, without limitation, suture
needles and other deployment devices as well as sufficiently
rigid and sharp ends on the suture itself to penetrate tissue.

“Self-retaining suture” refers to a suture that comprises
features on the suture filament for engaging tissue without the
need for a knot or suture anchor.

“Tissue retainer” (or simply “retainer”) or “barb” refers to
a physical feature of a suture filament which is adapted to
mechanically engage tissue and resist movement of the suture
in at least one axial directions. By way of example only, tissue
retainer or retainers can include hooks, projections, barbs,
darts, extensions, bulges, anchors, protuberances, spurs,
bumps, points, cogs, tissue engagers, traction devices, surface
roughness, surface irregularities, surface defects, edges, fac-
ets and the like. In certain configurations, tissue retainers are
adapted to engage tissue to resist movement of the suture in a
direction other than the direction in which the suture is
deployed into the tissue by the surgeon, by being oriented to
substantially face the deployment direction. In some embodi-
ments the retainers lie flat when pulled in the deployment
direction and open or “fan out” when pulled in a direction
contrary to the deployment direction. As the tissue-penetrat-
ing end of each retainer faces away from the deployment
direction when moving through tissue during deployment, the
tissue retainers should not catch or grab tissue during this
phase. Once the self-retaining suture has been deployed, a
force exerted in another direction (often substantially oppo-
site to the deployment direction) causes the retainers to be
displaced from the deployment position (i.e. resting substan-
tially along the suture body), forces the retainer ends to open
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(or “fan out”) from the suture body in a manner that catches
and penetrates into the surrounding tissue, and results in
tissue being caught between the retainer and the suture body;
thereby “anchoring” or affixing the self-retaining suture in
place. In certain other embodiments, the tissue retainers may
be configured to permit motion of the suture in one direction
and resist movement of the suture in another direction without
fanning out or deploying. In certain other configurations, the
tissue retainer may be configured or combined with other
tissue retainers to resist motion of the suture filament in both
directions. Typically a suture having such retainers is
deployed through a device such as a cannula which prevents
contact between the retainers and the tissue until the suture is
in the desired location.

“Retainer configurations” refers to configurations of tissue
retainers and can include features such as size, shape, flex-
ibility, surface characteristics, and so forth. These are some-
times also referred to as “barb configurations”.

“Bidirectional suture” refers to a self-retaining suture hav-
ing retainers oriented in one direction at one end and retainers
oriented in the other direction at the other end. A bidirectional
suture is typically armed with a needle at each end of the
suture thread. Many bidirectional sutures have a transition
segment located between the two barb orientations.

“Transition segment” refers to a retainer-free (barb-free)
portion of a bidirectional suture located between a first set of
retainers (barbs) oriented in one direction and a second set of
retainers (barbs) oriented in another direction. The transition
segment can be at about the midpoint of the self-retaining
suture, or closer to one end of the self-retaining suture to form
an asymmetrical self-retaining suture system.

“Suture thread” refers to the filamentary body component
of the suture. The suture thread may be a monofilament, or
comprise multiple filaments as in a braided suture. The suture
thread may be made of any suitable biocompatible material,
and may be further treated with any suitable biocompatible
material, whether to enhance the sutures’ strength, resilience,
longevity, or other qualities, or to equip the sutures to fulfill
additional functions besides joining tissues together, reposi-
tioning tissues, or attaching foreign elements to tissues.

“Monofilament suture” refers to a suture comprising a
monofilamentary suture thread.

“Braided suture” refers to a suture comprising a multifila-
mentary suture thread. The filaments in such suture threads
are typically braided, twisted, or woven together.

“Degradable suture” (also referred to as “biodegradable
suture” or “absorbable suture”) refers to a suture which, after
introduction into a tissue is broken down and absorbed by the
body. Typically, the degradation process is at least partially
mediated by, or performed in, a biological system. “Degra-
dation” refers to a chain scission process by which a polymer
chain is cleaved into oligomers and monomers. Chain scis-
sion may occur through various mechanisms, including, for
example, by chemical reaction (e.g., hydrolysis, oxidation/
reduction, enzymatic mechanisms or a combination of these)
or by a thermal or photolytic process. Polymer degradation
may be characterized, for example, using gel permeation
chromatography (GPC), which monitors the polymer
molecular mass changes during erosion and breakdown.
Degradable suture material may include polymers such as
polyglycolic acid, copolymers of glycolide and lactide,
copolymers of trimethylene carbonate and glycolide with
diethylene glycol (e.g., MAXON™, Tyco Healthcare
Group), terpolymer composed of glycolide, trimethylene car-
bonate, and dioxanone (e.g., BIOSYN™ [glycolide (60%),
trimethylene carbonate (26%), and dioxanone (14%)], Tyco
Healthcare Group), copolymers of glycolide, caprolactone,
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trimethylene carbonate, and lactide (e.g., CAPROSYN™,
Tyco Healthcare Group). A dissolvable suture can also
include partially deacetylated polyvinyl alcohol. Polymers
suitable for use in degradable sutures can be linear polymers,
branched polymers or multi-axial polymers. Examples of
multi-axial polymers used in sutures are described in U.S.
Patent Application Publication Nos. 20020161168,
20040024169, and 20040116620. Sutures made from degrad-
able suture material lose tensile strength as the material
degrades. Degradable sutures can be in either a braided mul-
tifilament form or a monofilament form.

“Non-degradable suture” (also referred to as “non-absorb-
able suture”) refers to a suture comprising material that is not
degraded by chain scission such as chemical reaction pro-
cesses (e.g., hydrolysis, oxidation/reduction, enzymatic
mechanisms or a combination of these) or by a thermal or
photolytic process. Non-degradable suture material includes
polyamide (also known as nylon, such as nylon 6 and nylon
6,6), polyester (e.g., polyethylene terephthlate), polytet-
rafluoroethylene (e.g., expanded polytetrafiuoroethylene),
polyether-ester such as polybutester (block copolymer of
butylene terephthalate and polytetra methylene ether glycol),
polyurethane, metal alloys, metal (e.g., stainless steel wire),
polypropylene, polyethelene, silk, and cotton. Sutures made
of non-degradable suture material are suitable for applica-
tions in which the suture is meant to remain permanently or is
meant to be physically removed from the body.

“Suture diameter” refers to the diameter of the body of the
suture. It is to be understood that a variety of suture lengths
may be used with the sutures described herein and that while
the term “diameter” is often associated with a circular periph-
ery, it is to be understood herein to indicate a cross-sectional
dimension associated with a periphery of any shape. Suture
sizing is based upon diameter. United States Pharmacopeia
(“USP”) designation of suture size runs from O to 7 in the
larger range and 1-0 to 11-0 in the smaller range; in the
smaller range, the higher the value preceding the hyphenated
zero, the smaller the suture diameter. The actual diameter of a
suture will depend on the suture material, so that, by way of
example, a suture of size 5-0 and made of collagen will have
a diameter of 0.15 mm, while sutures having the same USP
size designation but made of a synthetic absorbable material
or a non-absorbable material will each have a diameter 0f 0.1
mm. The selection of suture size for a particular purpose
depends upon factors such as the nature of the tissue to be
sutured and the importance of cosmetic concerns; while
smaller sutures may be more easily manipulated through tight
surgical sites and are associated with less scarring, the tensile
strength of a suture manufactured from a given material tends
to decrease with decreasing size. It is to be understood that the
sutures and methods of manufacturing sutures disclosed
herein are suited to a variety of diameters, including without
limitation 7, 6, 5, 4, 3, 2, 1, 0, 1-0, 2-0, 3-0, 4-0, 5-0, 6-0, 7-0,
8-0, 9-0, 10-0 and 11-0.

“Suture deployment end” refers to an end of the suture to be
deployed into tissue; one or both ends of the suture may be
suture deployment ends. The suture deployment end may be
attached to a deployment device such as a suture needle, or
may be sufficiently sharp and rigid to penetrate tissue on its
own.

“Armed suture” refers to a suture having a suture needle on
at least one suture deployment end.

“Needle attachment” refers to the attachment of a needle to
a suture requiring same for deployment into tissue, and can
include methods such as crimping, swaging, using adhesives,
and so forth. The suture thread is attached to the suture needle
using methods such as crimping, swaging and adhesives.
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Attachment of sutures and surgical needles is described in
U.S. Pat. Nos. 3,981,307, 5,084,063, 5,102,418, 5,123,911,
5,500,991, 5,722,991, 6,012,216, and 6,163,948, and U.S.
Patent Application Publication No. US 2004/0088003). The
point of attachment of the suture to the needle is known as the
swage.

“Suture needle” refers to needles used to deploy sutures
into tissue, which come in many different shapes, forms and
compositions. There are two main types of needles, traumatic
needles and atraumatic needles. Traumatic needles have
channels or drilled ends (that is, holes or eyes) and are sup-
plied separate from the suture thread and are threaded on site.
Atraumatic needles are eyeless and are attached to the suture
atthe factory by swaging or other methods whereby the suture
material is inserted into a channel at the blunt end of the
needle which is then deformed to a final shape to hold the
suture and needle together. As such, atraumatic needles do not
require extra time on site for threading and the suture end at
the needle attachment site is generally smaller than the needle
body. In the traumatic needle, the thread comes out of the
needle’s hole on both sides and often the suture rips the
tissues to a certain extent as it passes through. Most modern
sutures are swaged atraumatic needles. Atraumatic needles
may be permanently swaged to the suture or may be designed
to come off the suture with a sharp straight tug. These “pop-
offs” are commonly used for interrupted sutures, where each
suture is only passed once and then tied. For barbed sutures
that are uninterrupted, these atraumatic needles are preferred.

Suture needles may also be classified according to the
geometry of the tip or point of the needle. For example,
needles may be (i) “tapered” whereby the needle body is
round and tapers smoothly to a point; (ii) “cutting” whereby
the needle body is triangular and has a sharpened cutting edge
on the inside; (iii) “reverse cutting” whereby the cutting edge
is on the outside; (iv) “trocar point” or “taper cut” whereby the
needle body is round and tapered, but ends in a small trian-
gular cutting point; (v) “blunt” points for sewing friable tis-
sues; (vi) “side cutting” or “spatula points” whereby the
needle is flat on top and bottom with a cutting edge along the
front to one side (these are typically used for eye surgery).

Suture needles may also be of several shapes including, (i)
straight, (i1) half curved or ski, (iii) % circle, (iv) ¥ circle, (v)
V4 circle, (vi) ¥ circle, (v) and compound curve.

Suturing needles are described, for example, in U.S. Pat.
Nos. 6,322,581 and 6,214,030 (Mani, Inc., Japan); and U.S.
Pat. No. 5,464,422 (W.L. Gore, Newark, Del.); and U.S. Pat.
No. 5,941,899; U.S. Pat. No. 5,425,746; U.S. Pat. No. 5,306,
288 and U.S. Pat. No. 5,156,615 (US Surgical Corp., Nor-
walk, Conn.); and U.S. Pat. No. 5,312,422 (Linvatec Corp.,
Largo, Fla.); and U.S. Pat. No. 7,063,716 (Tyco Healthcare,
North Haven, Conn.). Other suturing needles are described,
for example, in U.S. Pat. Nos. 6,129,741; 5,897,572; 5,676,
675; and 5,693,072. The sutures described herein may be
deployed with a variety of needle types (including without
limitation curved, straight, long, short, micro, and so forth),
needle cutting surfaces (including without limitation, cutting,
tapered, and so forth), and needle attachment techniques (in-
cluding without limitation, drilled end, crimped, and so
forth). Moreover, the sutures described herein may them-
selves include sufficiently rigid and sharp ends so as to dis-
pense with the requirement for deployment needles alto-
gether.

“Needle diameter” refers to the diameter of a suture
deployment needle at the widest point of that needle. While
the term “diameter” is often associated with a circular periph-
ery, it is to be understood herein to indicate a cross-sectional
dimension associated with a periphery of any shape.
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“Wound closure” refers to a surgical procedure for closing
of a wound. An injury, especially one in which the skin or
another external or internal surface is cut, torn, pierced, or
otherwise broken is known as a wound. A wound commonly
occurs when the integrity of any tissue is compromised (e.g.,
skin breaks or burns, muscle tears, or bone fractures). A
wound may be caused by an act, such as a puncture, fall, or
surgical procedure; by an infectious disease; or by an under-
lying medical condition. Surgical wound closure facilitates
the biological event of healing by joining, or closely approxi-
mating, the edges of those wounds where the tissue has been
torn, cut, or otherwise separated. Surgical wound closure
directly apposes or approximates the tissue layers, which
serves to minimize the volume new tissue formation required
to bridge the gap between the two edges of the wound. Clo-
sure can serve both functional and aesthetic purposes. These
purposes include elimination of dead space by approximating
the subcutaneous tissues, minimization of scar formation by
careful epidermal alignment, and avoidance of a depressed
scar by precise eversion of skin edges.

“Tissue elevation procedure” refers to a surgical procedure
for repositioning tissue from a lower elevation to a higher
elevation (i.e. moving the tissue in a direction opposite to the
direction of gravity). The retaining ligaments of the face
support facial soft tissue in the normal anatomic position.
However, with age, gravitational effects and loss of tissue
volume effect downward migration of tissue, and fat descends
into the plane between the superficial and deep facial fascia,
thus causing facial tissue to sag. Face-lift procedures are
designed to lift these sagging tissues, and are one example of
a more general class of medical procedure known as a tissue
elevation procedure. More generally, a tissue elevation pro-
cedure reverses the appearance change that results from
effects of aging and gravity over time, and other temporal
effects that cause tissue to sag, such as genetic effects. It
should be noted that tissue can also be repositioned without
elevation; in some procedures tissues are repositioned later-
ally (away from the midline), medially (towards the midline)
or inferiorly (lowered) in order to restore symmetry (i.e.
repositioned such that the left and right sides of the body
“match”).

“Medical device” or “implant” refers to any object placed
in the body for the purpose of restoring physiological func-
tion, reducing/alleviating symptoms associated with disease,
and/or repairing and/or replacing damaged or diseased organs
and tissues. While normally composed of biologically com-
patible synthetic materials (e.g., medical-grade stainless
steel, titanium and other metals or polymers such as polyure-
thane, silicon, PLA, PLGA and other materials) that are exog-
enous, some medical devices and implants include materials
derived from animals (e.g., “xenografts” such as whole ani-
mal organs; animal tissues such as heart valves; naturally
occurring or chemically-modified molecules such as col-
lagen, hyaluronic acid, proteins, carbohydrates and others),
human donors (e.g., “allografts” such as whole organs; tis-
sues such as bone grafts, skin grafts and others), or from the
patients themselves (e.g., “autografts” such as saphenous
vein grafts, skin grafts, tendon/ligament/muscle transplants).
Medical devices that can be used in procedures in conjunction
with the present invention include, but are not restricted to,
orthopedic implants (artificial joints, ligaments and tendons;
screws, plates, and other implantable hardware), dental
implants, intravascular implants (arterial and venous vascular
bypass grafts, hemodialysis access grafts; both autologous
and synthetic), skin grafts (autologous, synthetic), tubes,
drains, implantable tissue bulking agents, pumps, shunts,
sealants, surgical meshes (e.g., hernia repair meshes, tissue

10

15

20

25

30

35

40

45

50

55

60

65

10

scaffolds), fistula treatments, spinal implants (e.g., artificial
intervertebral discs, spinal fusion devices, etc.) and the like.
Composite Self-Retaining Sutures

As discussed above, the present invention provides com-
positions, configurations, methods of manufacturing and
methods of using self-retaining systems in surgical proce-
dures which greatly increase the ability of the self-retaining
sutures to anchor into the surrounding tissue to provide supe-
rior holding strength and improve clinical performance. In
accordance with one embodiment, the present invention com-
prises a self-retaining suture comprising a composite filament
made from two or more different materials.

A. Self-Retaining Composite Suture System

FIG. 1A illustrates a bidirectional self-retaining composite
suture system 100. Self-retaining suture system 100 com-
prises needles 110, 112 attached to self-retaining composite
suture thread 102. Self-retaining composite suture thread 102
includes a plurality of retainers 130 distributed on the surface
of' a composite filament 120. In lead-in region 140 of com-
posite filament 120 there are no retainers 130. Inregion 142 of
composite filament 120 there are a plurality of retainers 130
arranged such that the suture can be deployed in the direction
of needle 110 but resists movement in the direction of needle
112. In transition region 144, there are no retainers 130. In
region 146, there are a plurality of retainers 130 arranged such
that the suture can be deployed in the direction of needle 112
but resists movement in the direction of needle 110. In lead-in
region 148 of composite filament 120 there are no retainers
130. A break is shown in each of regions 140, 142, 144, 146
and 148 to indicate that the length of each region may be
varied and selected depending upon the application for which
the suture is intended to be used. Although a bidirectional
self-retaining suture system 100 is illustrated, the present
invention includes self-retaining suture systems of a wide
variety of retainer and needle configurations described above.
Likewise the configuration of each of needles 110 and 112
can be any of the range of different surgical needles devel-
oped for use in different applications. Needles 110 and 112
may have the same configuration or different configurations.

FIG. 1B illustrates a magnified view of self-retaining
suture 102 in region 142. As shown in FIG. 1B, a plurality of
retainers 130 is distributed on the surface of composite fila-
ment 120. The affixation of self-retaining sutures after
deployment in tissue entails the penetration of retainer ends
into the surrounding tissue resulting in tissue being caught
between the retainer and the suture body. The inner surface of
the retainer that is in contact with the tissue that is caught
between the retainer 130 and the composite filament 120,
herein referred to as the “tissue engagement surface” or
“inner retainer surface,” can be adapted to better engage the
tissue. As illustrated in FIG. 1B, each retainer 130 has a tip
132 and tissue retainer surface 134. When self-retaining
suture thread 102 is moved in the direction of arrow 136,
retainer 130 lies flat against the body of composite filament
120. However, when self-retaining suture thread 102 is
moved in the direction of arrow 138, tip 132 or retainer 130
engages tissue surrounding composite filament 120 and
causes retainer 130 to fan out from composite filament 120
and engage the tissue with face 134 thereby preventing move-
ment of the suture in that direction.

FIG. 1C shows a cross-sectional view of composite fila-
ment 120. As can been seen in FIG. 1C, composite filament
120 includes two materials, a core material 150 and a sheath
material 152. Because the retainers 130 are formed on the
surface of composite filament 120, the retainers are made, in
this embodiment, entirely of sheath material 152. Accord-
ingly, in specific embodiments of the present invention,
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sheath material 152 is selected to have properties which are
advantageous to the creation, elevation, deployment and
function of retainers 130. Furthermore, in specific embodi-
ments of the present invention, retainers 130 include little or
none of core material 150. Thus, core material 150 is selected
to have properties which are advantageous to the mechanical
properties of the suture. For example, in certain embodiments
sheath material 152 may be selected to have a larger plastic
deformation zone (also known as work hardening zone) i.e.
more ability to undergo plastic (permanent) deformation than
core material 150. This permits retainers 130 to be elevated
(bent away) from composite filament 120 and plastically
deformed into the elevated position away from composite
filament 120. Furthermore, in certain embodiments, core
material 150 is selected to have greater tensile strength and/or
elasticity, and preferably greater flexibility than sheath mate-
rial 152 which permits composite filament 120 to have a
greater tensile strength and/or resistance to breakage than if
the filament was entirely made of the sheath material 152.

In alternative embodiments a retainer 130 may comprise
the sheath material 152 and also some portion of the core
material 150 or another non-sheath material. In such embodi-
ments the materials are selected such that the composite prop-
erties of the materials in the retainer permit or enhance the
function of the retainer such as by facilitating elevation of the
retainer 130.

B. Retainer Formation and Elevation

Suture threads described herein may be produced by any
suitable method, including without limitation, injection
molding, stamping, cutting, laser, extrusion, and so forth.
With respect to cutting, polymeric thread or filaments may be
manufactured or purchased for the suture body, and the
retainers can be subsequently cut onto the suture body; the
retainers may be hand-cut, laser-cut, or mechanically
machine-cut using blades, cutting wheels, grinding wheels,
and so forth. During cutting either the cutting device or the
suture thread may be moved relative to the other, or both may
be moved, to control the size, shape and depth of cut 210.
Particular methods for cutting barbs on a filament are
described in U.S. patent application Ser. No. 09/943,733
titled “Method Of Forming Barbs On A Suture And Apparatus
For Performing Same” to Genova et al., and U.S. patent
application Ser. No. 10/065,280 titled “Barbed Sutures” to
Leung et al. both of which are incorporated herein by refer-
ence.

Referring now to FIGS. 2A, 2B and 2C where an exem-
plary process for making a retainer 130 in a composite fila-
ment 120 is provided. FIG. 2A shows a longitudinal cross-
section of filament 120. As shown in FIG. 2A composite
filament 120 comprises core material 150 and sheath material
152. Composite filament 120 may be formed by any method
known in the art for making a composite filament having two
different materials each having the properties required for the
function of the material in the filament. One suitable method
is co-extrusion of different materials having the required
properties as will be further described with respect to FIG.
3A. Another suitable method is extrusion of a material over a
preformed filament as will be further described with respect
to FIG. 3B. Other methods of forming a coating layer on a
preformed filament may also be utilized including, without
limitation, dip coating, spray coating, curtain coating and/or
chemical deposition (such as chemical vapor deposition
CVD).

As shown in FIG. 2B a retainer 130 may be formed on
composite filament 120 by making a cut 210 into sheath
material 152 of composite filament 120. Cut 210 can be made
using any of a wide range of technologies. Such technologies
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include be hand-cutting, laser-cutting, or mechanically
machine-cutting using blades, cutting wheels, grinding
wheels, and so forth. Note that in this embodiment, the depth
of cut has been selected such that cut 210 is entirely within
sheath material 152 and does not penetrate into core material
150. As shown in FIG. 2B, retainer 130 may still lay flat
against the surface of composite filament 120 after cut 210
has been made in sheath material 152.

In order for retainer 130 to effectively engage tissue after
deployment, tip 132 is preferably elevated above the surface
of composite filament 120. As shown in FIG. 2C, after the
retainer cutting step of FIG. 2B, retainer 130 is mechanically
bent away from the body of composite filament 120 in the
direction shown by arrow 220. Tip 132 is moved above the
surface of composite filament 120 and tissue engagement
surface 134 is exposed. The elevation of retainer 130 can be
achieved by a number of mechanisms. In a simple example, a
cutting blade is used to form cut 210 and the cutting blade is
then removed from cut 210 in a manner that bends retainer
130 away from the body of composite filament 120. In an
alternative example, the retainer is mechanically elevated by
a device other than the blade.

If sheath material 152 is too elastic, retainer 130 will spring
back to the retainer’s previous position flush with the surface
of composite filament 120 (as shown by the dotted line) after
elevation of the retainer. This is also the case if the material
does not have the ability to undergo permanent deformation.
Thus, in accordance with a specific embodiment of the
present invention, sheath material 152 is selected such that it
is sufficiently plastically deformable that after retainer 130
has been moved away from composite filament 120, sheath
material remains in its new deformed shape with the tip 132 of
retainer 130 substantially elevated above the surface of com-
posite filament 120 and tissue engagement surface 134
exposed. Sheath material 152 is selected such that the
mechanical movement of tip 132 of retainer away from com-
posite filament 120 is sufficient to plastically deform the
region 230 of material 152 at the base of retainer 130 causing
it to take on a new permanent shape. However, as such plastic
deformation would be undesirable in the suture as a whole,
core material 150 is selected to have significantly lower plas-
ticity and significantly higher elasticity and/or tensile
strength than sheath material 152.

In other embodiments, retainer 130 may be formed by a
process other than cutting into the sheath of the filament. For
example, as shown in FIG. 2D retainers can be formed by
melting the sheath material 152 in region 240 and then draw-
ing material out of filament 120 with device 244 to form
retainer 130 and then cooling the material. In this embodi-
ment the sheath material 152 is selected such that it may be
melted and manipulated without disrupting the tensile
strength of the core material. In alternative embodiments a
preformed retainer may be affixed mechanically, adhesively
or by melting to the sheath. The sheath material is in this
embodiment selected to enhance the affixation of the retainer
to the filament and retention of the retainer by the filament. In
another embodiment molten material is formed onto the
sheath in the shape of a retainer and the molten material fuses
with the sheath material. The sheath material in this case is
selected to enhance the adhesion or fusion with the externally
applied molten material. In some cases the molten material
may be the same material as the sheath.

C. Co-Extrusion of Composite Monofilament

As described above, a composite filament can be made in
many different ways. In accordance with one embodiment of
the invention, a composite monofilament 320 is formed by
co-extruding two materials. As shown in FIG. 3A, satellite
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extruder 310 heats, melts and extrudes a first material 311
along conduit 312 to main extruder 330. Metering pump 313
on conduit 312 controls the flow of first material 311 to main
extruder 330. A second satellite extruder 315 heats, melts and
extrudes a second material 316 along conduit 317 to main
extruder 330. Metering pump 318 on conduit 317 controls the
flow of second material 316 to main extruder 330.

In main extruder 330, the two melted materials 311, 316
flow through two flow paths 336, 338 through an extrusion die
332 which controls the arrangement of the two materials 311,
316 when the materials combine in composite flow channel
339. The two materials are combined are combined in com-
posite flow channel 339 as shown and then extruded from die
332 through die exit 334. Die 332 and flow channels 336, 338,
339 are designed and operated such that the two materials 311
and 316 do not mix in composite flow channel 339. The fiber
340 which is still melted material is then solidified by air or
liquid cooling in quenching station 350. Quenching station
350 preferably optionally includes a quenching bath 352 for
liquid cooling. The solidified filament 342 is then drawn in
drawing machine 360. Typically the solidified filament is
drawn at temperatures between 30-80% of melting point
(Celsius). Usually the suture is extruded then drawn on sev-
eral rollers with decreasing temperature. Drawing of the fila-
ment reduces the diameter of the filament while at the same
time orienting the molecules of the polymers of the filament
and enhancing the tensile strength of the filament. Typically
drawing is conducted in a continuous process by winding the
filament around a series of rollers where each roller in the
series has a slightly higher roller surface speed. The speed
differential of the rollers results in stretching of the filament
as the filament passes from roller to roller. The filament may
also be tempered by one or more heating and cooling steps
before, during or after the drawing process. As illustrated in
FIG. 3A, drawn filament 344 is tempered in tempering
machine 370 as the filament is passed through heating unit
372. After the filament has been drawn and tempered the
finished monofilament 346 is passed to winder 364 where the
composite monofilament is wound onto drum 366 until
required for preparation of self-retaining sutures.

FIG. 3B illustrates an alternative method of making a fila-
ment suitable for use in embodiments of the present inven-
tion. As shown in FIG. 3B, a core filament 380 is drawn
through an extrusion die 382. Satellite extruder 385 heats,
melts and extrudes a sheath material 386 via conduit 387 to
die 382. Metering pump 388 controls the flow of sheath
material 386 to flow path 389 of die 382. The rate of supply of
sheath material 386 and the rate of movement of core filament
380 are controlled such that a sheath material 386 is evenly
coated on the core 380 in the desired cross-section (as deter-
mined by the cross-section of the extrusion nozzle 390. A
suitable method for making a composite filament comprising
a core coated with an extruded material is described in U.S.
Pat. No. 6,183,499 titled “Surgical Filament Construction” to
Fisher et al. which is incorporated herein by reference. The
finished filament 392 comprising core filament 380 and
sheath material 386 may be quenched, tempered and drawn
and then wound onto a drum as shown in FIG. 3A. However,
in certain embodiments, core filament 380 may already have
been drawn and no further drawing of finished filament 392
may be necessary or desirable. In some embodiments, for
example, a core filament of a core material may be extruded
and then drawn. Then the same material may be extruded over
the core filament (as shown in FIG. 3B) without subsequent
drawing of the filament. The resulting filament has a core and
sheath of the same material, however, the sheath material has
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different physical properties than the core material because
the sheath material has not undergone the drawing process.

Although extrusion has been illustrated in FIGS. 3A and
3B, any suitable manufacturing process may be used to form
the composite filaments utilized as a stock filament material
for embodiments of the present invention. In another pre-
ferred embodiment, the composite materials may be spun into
fibers to be used as monofilament or multifilament sutures. To
produce fibers having the core/sheath structure of FIG. 1, the
core and sheath constituent materials are separately melted.
The constituent materials are separately fed as polymer melts
to a spinneret and are combined in the spinneret just before
the spinneret exit orifice. The spinning device may have one
or a plurality of spinnerets. The filament produced from a
spinneret undergoes subsequent processing such as quench-
ing, drawing and tempering in order to produces a composite
filament suitable for use in embodiments ofthe present inven-
tion. Particular apparatus and methods for forming composite
monofilaments suitable for use in the present invention can be
found in U.S. Pat. No. 7,070,610 titled “Monofilament Suture
And Manufacturing Method Thereof” to Im et al. and U.S.
Pat. No. 6,315,788 titled “Composite Materials And Surgical
Articles Made Therefrom” to Roby both of which are incor-
porated herein by reference.

D. Filament Configurations

Depending upon the configuration of the extruders, die,
spin block, spinneret, or other manufacturing equipment, a
composite filament suitable for creating a self-retaining
suture in accordance with embodiments of the present inven-
tion can be created with a wide variety of different arrange-
ments of different materials. Furthermore, composite fila-
ments can be made using 2, 3, 4 or even more different
component materials if necessary or desired for the particular
application. Different configurations of composite filaments
are useful in specific embodiments of the present invention
and are described below with respect to FIGS. 4A-41.

As shown in FIGS. 4A and 4B simple composite filaments
410, 420 comprise two materials arranged one material in the
core and a second material as a sheath over the core. This
arrangement of materials in a composite filament can be made
by co-extrusion ofthe two materials. In a simple variation, the
two materials may be used in different amounts depending on
the use to which the filament will be put. For example in FI1G.
4A the core material 412 takes up about 25% of the cross-
sectional area of filament 410, with the sheath material 414
taking up 75% of the cross-sectional area. In comparison, in
FIG. 4B, the core material 422 and sheath material 424 each
take up about 50% of the cross-sectional area. In general, the
core material may comprise from 10% to 90% of the total
cross-sectional area of the filament. Preferably the core mate-
rial will comprise from 25% to 90% of the total cross-sec-
tional area of the filament. More preferably the core material
will comprise more than 50% of the total cross-sectional area
of the filament.

The configuration of the materials in the composite fila-
ment will depend upon the characteristics of the materials and
the amount of material necessary to fulfill the role of the
filament. For example, in one embodiment the material of
sheath 414 is chosen to be plastically deformable in order that
barbs may be more easily formed and elevated from the
surface of the filament. The depth of the sheath may thus be
chosen such that the retainers when formed are formed
entirely out of the sheath material. Likewise in one embodi-
ment of the present invention the material of the core 412 is
chosen because of its characteristic of tensile strength. The
strength of the final filament material will depend in large part
upon the cross-sectional area of core 412. Thus core 412 is
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desirably as large as possible while providing sufficient
amount of sheath material 414 to permit the formation of
retainers. The overall diameter of the suture thread is also
limited based upon the surgical needs.

FIG. 4C illustrates an alternative filament 430 in which a
plurality of “islands” 432 are present in a surrounding “sea”
434 of the second material. The plurality of islands 432
together comprise a segmented core 433 of filament 430. The
“sea” 434 of the second material comprises the sheath and
also fills the interstices between the segments 432 of the
segmented core 433. This arrangement of materials in a com-
posite filament 430 can be made by co-extrusion of the two
materials. The resulting fiber may show a useful combination
of the characteristics of the materials. For example, if a uni-
tary core of a first material such as core 412 of FIG. 4A proves
to have suitable tensile strength but is too resistant to bending,
the configuration of FIG. 4C may, by creating separate
regions 432 of the core material separated by more flexible
zones 434 of the sheath material be more flexible to bending
even if the same cross-sectional area of material (and thus
tensile strength) is present. Particular configurations of com-
posite monofilaments can be found in U.S. Pat. No. 7,070,610
titled “Monofilament Suture And Manufacturing Method
Thereof” to Im et al. which is incorporated herein by refer-
ence.

FIG. 4D illustrates another alternative composite filament
440 for use in the present invention. The composite filament
of FIG. 4D is made from three different materials. A first
material forms a core 442 of filament 440. A second material
444 forms a sheath on the outer surface of composite filament
442. The third material is sandwiched between the core 440
and the sheath 444 in intermediate layer 446. This arrange-
ment of materials in a composite filament can be made by
co-extrusion of the three materials. The material of interme-
diate layer 446 may be selected, for example, for its mechani-
cal properties as an interface between the core 442 and sheath
444. Alternatively the material of intermediate layer 446 may
be selected for favorable interaction with tissues in the retain-
ers as the material of intermediate layer 446 will only be
exposed to the tissue where retainers are cut into filament 440.
For example, the material of intermediate layer 446 may
comprise an adhesive component, a therapeutic component or
a material that promotes tissue adherence to the retainer or
promotes wound healing as described below.

FIG. 4E illustrates another alternative embodiment in
which the core 462 of filament 460 comprises a plurality of
filaments 461 braided together. Core 460 is surrounded by a
sheath 464. This filament may be prepared by taking a braided
thread (such as braided suture) and extruding the sheath onto
the braided thread as it is passed through an extrusion die.
Note that, as before, sheath 464 is sufficiently thick that
creating retainers in the surface of filament 462 does not cut
into core 462 or fibers 461 of core 462. For example, the
maximum depth of a straight cut for a retainer is illustrated by
dashed line E-E. Thus core 462 and the material of its fibers
461 may be engineered for high tensile strength and flexibility
while sheath 464 is selected based upon it ability to form,
elevate and deploy retainers. A suitable method for making a
composite filament comprising a braided core is described in
U.S. Pat. No. 6,183,499 titled “Surgical Filament Construc-
tion” to Fisher et al. which is incorporated herein by refer-
ence.

FIG. 4F illustrates an alternative embodiment in which the
core and sheaths of filament 450 have different shapes. In the
embodiment of FIG. 4F, core 452 has a circular cross-section
while the sheath 454 has a triangular cross-section. This
arrangement provides a greater volume of the second material
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at the apices of the triangle while still allowing the core
material to provide a high percentage of the total cross-sec-
tion of the filament. In this embodiment, the retainers are cut
into the apices of the triangular cross section thus making
optimal use of the material in the sheath 454. In addition, the
retainer configuration may be selected such that retainers
with arcuate bases are cut into the apices of the triangle.
Dashed line F-F illustrates the cut for an arcuate base of a
retainer and illustrates that the cut extends through a greater
amount of the sheath 454 than would a straight cut. Methods
for making self-retaining suture from filaments with triangu-
lar or other polyhedral cross-section are disclosed in U.S. Pat.
No. 5,342,376 titled “Inserting Device For A Barbed Tissue
Connector” to Ruff which is incorporated herein by refer-
ence. The arrangement of materials in a composite filament
shown in FIG. 4F can be made by co-extrusion of the two
materials. The extruder nozzle is selected to have the desired
shape. The shape of the cross-section of the filament matches
the shape of the extruder nozzle. Alternatively, the filament
may be formed as in FIG. 4A and then the sheath material 454
may be formed into the triangular shape by post-extrusion
manipulations, such as using rollers to pinch the material into
shape and then heating to anneal the polymer into the chosen
shape prior to creation of the retainers.

Naturally, other geometric arrangements of the materials
are possible, for example the sheath may be formed with a
square cross-section, pentagonal, hexagonal or other polygo-
nal cross-section. FIG. 4G illustrates a filament 470 having a
sheath comprising three segments 474, 475, 476 over a cir-
cular core 472. In this embodiment the sheath is not continu-
ous but comprised of three elements arrayed around core 472.
In this embodiment, the retainers are cut into the apices of the
sheath elements 474, 475, 476 thus making optimal use of the
sheath material for making retainers and providing for a large
cross-section of core 472. FIG. 4H illustrates a filament 480
having a square sheath comprising four segments 484, 485,
486, 487 over a square core 482. In this embodiment, the
retainers are cut into the apices of the sheath section 484, 485,
486, 487 thus making optimal use of the material in the sheath
and providing for a large cross-section of core 482. FIG. 41
illustrates a filament 490 having a circular cross-section
wherein the core 492 has a triangular cross-section. In this
embodiment, the retainers are preferably cut into the thicker
portions of the sheath 494, 495, 496.

E. Filament Materials

It is an advantage of the present invention that the material
of the sheath of the filament may have different properties
than the material of the core. The material of the sheath may
thus be selected to have properties useful for retainer forma-
tion, elevation and deployment material and the material of
the core may be selected for properties such as strength and
flexibility. Suitable materials for the core include many mate-
rials that are currently used for making sutures. Suitable
non-degradable suture materials for the core material include
polyamide (also known as nylon, such as nylon 6 and nylon
6.6), polyester (e.g., polyethylene terephthlate), polytet-
rafluoroethylenes (e.g., expanded polytetrafluoroethylene),
polyether-ester such as polybutester (block copolymer of
butylene terephthalate and polytetra methylene ether glycol),
4-hydroxybutyrate, polyhydroxylalkanoate, polyurethane,
metals and metal alloys (e.g., stainless steel wire), polypro-
pylene, polyethelene, silk, and cotton. Suitable absorbable
materials for the core include polyglycolic acid homopoly-
mer, copolymers of glycolide and e-caprolactone, copoly-
mers of glycolide and lactide, copolymers of trimethylene
carbonate and glycolide with diethylene glycol (e.g.,
MAXON™, Tyco Healthcare Group), polyhydroxylal-
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kanoates (such as poly(4-hydroxybutyrate) or poly(4-hy-
droxybutyrate-co-3-hydroxybutyrate)), terpolymer com-
posed of glycolide, trimethylene carbonate, and dioxanone
(e.g., BIOSYN™ [glycolide (60%), trimethylene carbonate
(26%), and dioxanone (14%)], Tyco Healthcare Group),
copolymers of glycolide, caprolactone, trimethylene carbon-
ate, and lactide (e.g., CAPROSYN™, Tyco Healthcare
Group).

Suitable core materials are characterized by high yield
strength after drawing and sufficient flexibility to ease han-
dling. One suitable core material is copolymer of glycolide
and e-caprolactone, in a ratio of 50/50 to 95/5. More prefer-
ably the ratio of glycolide to e-caprolactone is between pref-
erably 70/30 to 80/20 and most preferably between 72/28 and
78/22. In some embodiments the core material has an elastic
constant (Young’s modulus) between 60,000 and 600,000
PSI. Preferably the core material has an elastic constant
greater than 100,000 PSI. In most embodiments the elastic
constant of the core material will be less than 400,000 PSI.
However a core material with a higher elastic constant will be
suitable if it has sufficient toughness and flexibility. Con-
versely a material with a lower elastic constant will be suit-
able if it has a low yield strength and sufficient toughness and
a large plastic zone with a sufficiently high ultimate tensile
strength (plastic suture can be advantageous in various appli-
cations which require permanent deformation to be imposed
on the suture during use) or a high yield strength (elastic
suture, which can be advantageous in various applications
which require compliance). In some embodiments the core
material will have a plasticity (amount of plastic deformation
as a percentage of total deformation before breaking) of
5-70% and 10-100% elongation at break. However, prefer-
ably the core material has a plasticity of around 30% and
15-80% elongation at break. Most suitable core materials will
have an elongation at break of 20-50%. The above elastic
constant, plasticity and elongation at break values are for the
core material as present in the finished suture (after drawing
and/or other treatments). Some suitable suture materials may
also have more than one elastic constant in the tensile curve
which can be represented by two differentially sloped linear
regions in the stress-strain curve, in such cases the combina-
tion of elastic constants are considered.

Because the retainers are formed from the material or mate-
rials of the sheath, the sheath layer or layers may desirably
incorporate materials that promote the formation, elevation
and deployment of the retainers. Materials that are suitable
for the sheath, in some embodiments, are characterized by
having a sufficiently small elastic zone and sufficiently large
plastic zone to allow for permanent deformation of barbs into
an elevated position during cutting and elevation and low
recoil after elevating the barbs. It is also desirable to select
materials for the sheath with low visco-elastic properties,
since in such materials, the recoil may over a time and go
undetected immediately after barb cutting and elevation. In
certain embodiments the material of the sheath material may
be selected to have a larger plastic deformation zone (also
known as work hardening zone) i.e. more ability to undergo
plastic (permanent) deformation than the material of the core
material. This permits retainers formed from the sheath mate-
rial to be elevated (bent away) from the filament and perma-
nently deformed into the elevated position away from com-
posite filament. For example, suitable materials for the sheath
include Nylon 6,6, polydioxanone, polypropylene, non-
drawn polycaprolactone, poly(4-hydroxybutyrate), non-
drawn polydioxanone. Materials which are not drawn typi-
cally exhibit a larger plastic region than those which have
been drawn. A disadvantage of non-drawn materials can be
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low stiftness. It is advantageous in some embodiments to use
non-drawn materials in the sheath and increase their crystal-
linity post barb-making by annealing thereby obtaining a
higher stiffness of the barb. The retainers can be treated to
increase their stiffness and strength e.g. by appropriate
annealing cycles (heating to a certain temperature and cool-
ing at a certain rate) using techniques similar to those taught
in U.S. Pat. No. 5,007,922 titled “Method Of Making A
Surgical Suture” to Chen et al. which is incorporated herein
by reference.

Preferably, the sheath material is also relatively stiff (i.e.
the sheath material has a high elastic constant, but a short
elastic zone, and a long plastic zone preferably with a large
work hardening coefficient) such that the retainers take a large
force to plastically deform, but have low recoil and thus
remain in the elevated position after deformation. Addition-
ally the sheath material preferably has sufficient flexural
strength to prevent barbs from bending backwards during
fixation of the suture in the tissues and sufficient strength to
prevent barbs from breaking during fixation of the suture in
the tissues. In some embodiments the sheath material has a
short elastic zone and a high yield strength. Thus, in some
embodiments the sheath material has an elongation at onset of
yielding (onset of plastic deformation) of less than 10% and
more preferably less than 3% elongation. At the same time the
sheath preferably has a high work hardening coefficient and
large plastic zone. Additionally, the plasticity (amount of
plastic deformation as a percentage of total deformation
before breaking) of the sheath material is, in some embodi-
ments, higher than the plasticity of the core material. In some
embodiments the sheath material has a plasticity which com-
prises 5-90% of total elongation and an ultimate elongation
(elongation at break) of 10-80%. Alternatively the sheath can
have a plasticity which comprises 30-80% of the total elon-
gation and an ultimate elongation of 15-60%. Most preferably
the plastic zone of the sheath material comprises 60-90% of
the ultimate elongation.

The material of the sheath in some embodiments also pref-
erably has a high strain-hardening exponent (also known as
work-hardening coefficient). Most materials with a distinc-
tive plastic zone have a strain-hardening exponent of 0.1-0.5.
Many materials with a low strain-hardening exponent (tend-
ing towards “perfect plastic”) are not desirable as a sheath
material due to the inability to withstand excess stress post
yielding. The sheath material may in some embodiments have
a strain-hardening exponent between 0.1 and 0.8 and prefer-
ably has a strain-hardening exponent between 0.3 and 0.7.
Note that in some embodiments a sheath of non-drawn poly-
mer may be extruded over a core polymer which has already
been drawn in which case, the sheath elastic constant, plas-
ticity and elongation at break values reflect the properties of
the material without drawing. However, the sheath material
may be annealed or otherwise treated after extrusion in order
to increase the crystallinity and strength (and therefore stiff-
ness).

It is another advantage of the present invention that the
sheath and/or outer layers of the filament may desirably incor-
porate materials that further promote tissue engagement. In
addition to tissue engagement at the retainers, use of tissue
engagement-promoting materials in at least part of the suture
sheath surface (whether or not such materials also make up all
or part of the retainers) can enhance the ability of the sutures
to stay in place. One such class of tissue engagement-promot-
ing materials are porous polymers that can be extruded,
including both microporous polymers and polymers that can
be extruded with bubbles (whether bioabsorbable or nonbio-
absorbable). A suture synthesized with such materials in the
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sheath can have a three-dimensional lattice structure that
increases tissue engagement surface area and permits tissue
infiltration into the suture body itself, thus having a sheath
structure that promotes successful suture use. Moreover, by
optimizing pore size, fibroblast ingrowth can be encouraged,
further facilitating the suture to be anchored in the tissue.
Furthermore, an agent can be utilized in conjunction with the
suture (introduced separately or adhered to the suture or
incorporated into a material of the suture) to encourage fibro-
sis. Fibrosis-inducing agents which may be used in conjunc-
tion with a self-retaining sutures in accordance with the
present invention are described in U.S. Pat. No. 7,166,570
titled “Medical Implants And Fibrosis-Inducing Agents™ to
Hunter et al. which is incorporated herein by reference.

One such microporous polymer is ePTFE (expanded poly-
tetrafluoroethylene). Self-retaining incorporating ePTFE
(and related microporous materials) in the sheath are well-
suited to uses requiring a strong and permanent lift (such as
breast lifts, face lifts, and other tissue repositioning proce-
dures), as tissue infiltration of the suture results in improved
fixation and engraftment of the suture and the surrounding
tissue thus providing superior hold and greater longevity of
the lift.

Additionally, self-retaining sutures described herein may
be provided with therapeutic compositions including, for
example, compositions to promote healing and prevent unde-
sirable effects such as scar formation, infection, pain, and so
forth. This can be accomplished in a variety of manners,
including for example: (a) by directly affixing to the suture a
formulation (e.g., by either spraying the suture with a poly-
mer/drug film, or by dipping the suture into a polymer/drug
solution), (b) by coating the suture with a substance such as a
hydrogel which will in turn absorb the composition, (c¢) by
interweaving formulation-coated thread (or the polymer itself
formed into a thread) into the suture structure in the case of
multi-filamentary sutures, (d) constructing the suture itself
with a composition. Such compositions may include without
limitation anti-proliferative agents, anti-angiogenic agents,
anti-infective agents, fibrosis-inducing agents, anti-scarring
agents, lubricious agents, echogenic agents, anti-inflamma-
tory agents, cell cycle inhibitors, analgesics, and anti-micro-
tubule agents. For example, a composition can be applied to
the suture before the retainers are formed, so that when the
retainers engage, the engaging surface is substantially free of
the coating. In this way, tissue being sutured contacts a coated
surface of the suture as the suture is introduced, but when the
retainer engages, a non-coated surface of the retainer contacts
the tissue. Alternatively, the suture may be coated after or
during formation of retainers on the suture if, for example, a
fully-coated rather than selectively-coated suture is desired.
In yet another alternative, a suture may be selectively coated
either during or after formation of retainers by exposing only
selected portions of the suture to the coating. The particular
purpose to which the suture is to be put or the composition
may determine whether a fully-coated or selectively-coated
suture is appropriate; for example, with lubricious coatings, it
may be desirable to selectively coat the suture, leaving, for
instance, the tissue-engaging surfaces of the sutures uncoated
in order to prevent the tissue engagement function of those
surfaces from being impaired. On the other hand, coatings
such as those comprising such compounds as anti-infective
agents may suitably be applied to the entire suture, while
coatings such as those comprising fibrosing agents may suit-
ably be applied to all or part of the suture (such as the tissue-
engaging surfaces). The purpose of the suture may also deter-
mine the sort of coating that is applied to the suture; for
example, self-retaining sutures having anti-proliferative coat-
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ings may be used in closing tumor excision sites, while self-
retaining sutures with fibrosing coatings may be used in tissue
repositioning procedures and those having anti-scarring coat-
ings may be used for wound closure on the skin. As well, the
structure of the suture may influence the choice and extent of
coating; for example, sutures having an expanded segment
may include a fibrosis-inducing composition on the expanded
segment to further secure the segment in position in the tissue.
Coatings may also include a plurality of compositions either
together or on different portions of the suture, where the
multiple compositions can be selected either for different
purposes (such as combinations of analgesics, anti-infective
and anti-scarring agents) or for the synergistic effects of the
combination.

F. Self-Elevating/Self-Deploying Retainers

As described above, in specific embodiments of the present
invention retainers are formed in the surface of a composite
filament to create a self-retaining suture. Advantageously, a
sheath material is plastically deformable such that the retain-
ers may be mechanically elevated after formation and will
retain the retainers’ elevated position. However, it is also
possible, by appropriate selection of filament materials, to
create a self-retaining suture in which the retainers elevate
without requiring external mechanical intervention or in
which the retainers self-elevate to augment the effects of
mechanical intervention to produce a greater combined eleva-
tion. This is advantageous as it reduces the need for mechani-
cal elevation which is time consuming, expensive and has the
potential for weakening the retainers. Depending upon the
materials chosen, the retainers can be made to elevate when
manufactured or upon insertion into tissue during a proce-
dure.

Referring now to FIG. 5A which shows a first example of
a self-elevating retainer on a composite filament. In this
example, sheath material 552 has been selected such that
during the manufacture of filament 500, tension is created in
the sheath material 552. This can be achieved, for example by
selecting a sheath material that shrinks after the filament has
been manufactured while selecting a core material 550 that
does not shrink or shrinks less than the sheath material. For
example, polyesters such as polyglycolide or polyglycolide
copolymers with e-caprolactone, [-lactide will shrink upon
heating to about 90-120 C. Thus, a sheath of this material may
be selectively shrunk relative to the core prior to forming
retainers.

Alternatively a residual stress may be left in the sheath
material compared to the core material by the extrusion and
drawing process. When a cut is made through the sheath
material 552, the tension in sheath material 552 causes the
sheath to contract as shown by arrows 510. Contraction of the
sheath causes the retainers to elevate from the position shown
by the dotted line to the position shown in FIG. 3A in the
direction of arrows 512. Thus, in this example, the retainers
530 elevate themselves without mechanical intervention
directly upon creating a cut in the surface of the filament 500.

Referring now to FIG. 5B which shows a second example
of a self-elevating retainer on a composite filament. In this
example, sheath material 552 has been selected such that a
tension is created in the sheath material 552 only upon
deployment of filament 500, into the tissue of a patient. Thus,
the retainers do not elevate until after the self-retaining suture
has been positioned in the tissue of the body. This can be
achieved, for example by selecting a sheath material that
shrinks when exposed to body temperature, moisture, pH or
another natural chemical property of tissue to which the
sheath material will only be exposed when deployed in the
body. For example, polyether-ester shape memory polymers
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can be activated to undergo contraction at transition tempera-
tures near body temperature. Core material 550 is selected
that does not shrink or shrinks less than the sheath material
and is also selected to enhance the mechanical strength of the
suture. Thus, when the suture is deployed into tissues of the
body, sheath 552 contracts in the direction of arrows 520, and
core 550 does not contract. Contraction of the sheath causes
the retainers 530 to elevate from the position shown by the
dotted line to the position shown in FIG. 5B in the direction of
arrows 522. Thus, in this example, the retainers 530 elevate
themselves without mechanical intervention after introduc-
ing the suture into the tissues of a patient. This has the advan-
tage that the suture can be inserted into the tissue in either
direction prior to elevation of the retainers. Furthermore, as
shown in FIG. 5B, retainers 530 and 531 face in opposite
directions and may be included in the same segment of suture.
Only after positioning in the tissues of the body do the retain-
ers elevate and prevent movement of the filament in both
directions.

In alternative embodiments, an external stimulus may be
required to cause elevation of the retainers. Such an external
stimulus may be, for example, the application of heat to cause
a temperature rise in the suture in excess of natural body
temperature. The temperature rise can be caused by heating
the suture outside the body prior to deployment. Alterna-
tively, magnetic particles may be embedded in the material of
the suture and caused to heat the suture material by magnetic
induction caused by application of a magnetic filed through
the tissue of the subject after deployment of the suture. Addi-
tionally, shape memory polymers which contract upon appli-
cation of UV light, pH or other stimuli which may be applied
to the suture after deployment in the tissues may be used in
sheath 552.

Referring now to FIG. 5C which shows a third example of a
self-elevating retainer on a composite filament. In this
example two materials have been used, a sheath material 552
and core material 550. In this example, core material 550 has
been selected such that it expands slightly upon exposure to
water. For example, partly deacetylated poly vinyl alcohol
and lightly-cross-linked polyacrylic acid are polymers which
expand upon contact with water. Thus, when filament 500 is
exposed to moisture either by soaking the filament in water
after retainer formation or by introducing the filament into a
patient, then the core material expands as shown by arrow
540. Sheath material 552 is selected so that it does not expand
when exposed to moisture. Thus, when the suture is exposed
to moisture, core 550 expands in the direction of arrows 540
while sheath 552 does not expand. Expansion of the core
causes the retainers 530 to elevate from the position shown by
the dotted line to the position shown in FIG. 5C in the direc-
tion of arrows 542. Thus, in this example, the retainers 530
elevate themselves without mechanical intervention after
exposing the filament 500, for example, to water or moisture
either before or after introducing the suture into the tissues of
a patient. In alternative embodiments other core materials
may be selected having other physical and/or chemical trig-
gers which cause them to expand. For example, thermore-
sponsive chitosan salts such as chitosan glycerophosphate
undergo physical changes upon exposure to temperature.

G. Clinical Uses

In addition to the general wound closure and soft tissue
repair applications, self-retaining sutures can be used in a
variety of other indications.

Self-retaining sutures described herein may be used in
various dental procedures, i.e., oral and maxillofacial surgical
procedures and thus may be referred to as “self-retaining
dental sutures.” The above-mentioned procedures include,
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but are not limited to, oral surgery (e.g., removal of impacted
or broken teeth), surgery to provide bone augmentation, sur-
gery to repair dentofacial deformities, repair following
trauma (e.g., facial bone fractures and injuries), surgical treat-
ment of odontogenic and non-odontogenic tumors, recon-
structive surgeries, repair of cleft lip or cleft palate, congenital
craniofacial deformities, and esthetic facial surgery. Self-
retaining dental sutures may be degradable or non-degrad-
able, and may typically range in size from USP 2-0 to USP
6-0.

Self-retaining sutures described herein may also be used in
tissue repositioning surgical procedures and thus may be
referred to as “self-retaining tissue repositioning sutures”.
Such surgical procedures include, without limitation, face
lifts, neck lifts, brow lifts, thigh lifts, and breast lifts. Self-
retaining sutures used in tissue repositioning procedures may
vary depending on the tissue being repositioned; for example,
sutures with larger and further spaced-apart retainers may be
suitably employed with relatively soft tissues such as fatty
tissues.

Self-retaining sutures described herein may also be used in
microsurgical procedures that are performed under a surgical
microscope (and thus may be referred to as “self-retaining
microsutures”). Such surgical procedures include, but are not
limited to, reattachment and repair of peripheral nerves, spi-
nal microsurgery, microsurgery of the hand, various plastic
microsurgical procedures (e.g., facial reconstruction), micro-
surgery of the male or female reproductive systems, and
various types of reconstructive microsurgery. Microsurgical
reconstruction is used for complex reconstructive surgery
problems when other options such as primary closure, healing
by secondary intention, skin grafting, local flap transfer, and
distant flap transfer are not adequate. Self-retaining microsu-
tures have a very small caliber, often as small as USP 9-0 or
USP 10-0, and may have an attached needle of corresponding
size. The microsutures may be degradable or non-degradable.

Self-retaining sutures as described herein may be used in
similarly small caliber ranges for ophthalmic surgical proce-
dures and thus may be referred to as “ophthalmic self-retain-
ing sutures”. Such procedures include but are not limited to
keratoplasty, cataract, and vitreous retinal microsurgical pro-
cedures. Ophthalmic self-retaining sutures may be degrad-
able or non-degradable, and have an attached needle of cor-
respondingly-small caliber.

Self-retaining sutures can be used in a variety of veterinary
applications for a wide number of surgical and traumatic
purposes in animal health.

Although the present invention has been shown and
described in detail with regard to only a few exemplary
embodiments of the invention, it should be understood by
those skilled in the art that it is not intended to limit the
invention to the specific embodiments disclosed. Various
modifications, omissions, and additions may be made to the
disclosed embodiments without materially departing from
the novel teachings and advantages of the invention, particu-
larly in light of the foregoing teachings. Accordingly, it is
intended to cover all such modifications, omissions, addi-
tions, and equivalents as may be included within the spiritand
scope of the invention as defined by the following claims.

What is claimed is:
1. A surgical suture comprising an elongated filament and
a plurality of retainers wherein:
the elongated filament is a composite filament including, a
core portion formed of a first material and an sheath
portion formed of a second material said plurality of
retainers being formed in said sheath portion;
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wherein the first material has higher tensile strength than
the second material and where the first material com-
prises a material that expands when exposed to moisture,
and

wherein the second material is more easily plastically 5
deformed than the first material and where the second
material does not expand when exposed to moisture;

such that expansion of at least some of the core portion
causes elevation of said plurality of retainers.
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